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ABSTRACT: Insufficient interface conformity is a challenge
faced in hybrid organic-silicon heterojunction solar cells
because of using conventional pyramid antireflection texturing
provoking the porosity of interface. In this study, we tested
alternative textures, in particular rounded pyramids and
inverted pyramids to compare the performance. It was
remarkably improved delivering 7.61%, 8.91% and 10.04%
efficiency employing conventional, rounded, and inverted
pyramids, respectively. The result was interpreted in terms of
gradually improving conformity of the Ag/organic/silicon
interface, together with the gradually decreasing serial
resistance. Altogether, the present data may guide further

PEDOT:PSS

n-Si

efforts arising the interface engineering for mastering high efficient heterojunction solar cells.
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ybrid solar cells based on the composites of poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PE-
DOT:PSS)/silicon (Si) heterojunction structures are currently
attracting significant attention, because of low cost solution-
based fabrication and potentially relatively high efficiencies.'
And a power conversion efficiency of 13.7% has been achieved
for the PEDOT:PSS/Si solar cells.” Notably, in the course of
the PEDOT:PSS/Si device fabrication, prior to the PE-
DOT:PSS spin-coating, Si is textured usually in form of
nanowires and pyramids to increase the light trapping.’~ '
Indeed, hybrid solar cells based on random pyramids were
demonstrated by Chen et al, permitting low reflectance
without introducing severe surface recombination."’ However,
a significant amount of air voids remained at the PEDOT:PSS/
Si interface in the valleys of the pyramids, resulting in an
incomplete interface, which is of great concern on achieving
high efficiency of heterojunction solar cells."" Schmidt et al. also
encountered the problem of the partial porosity of the
PEDOT:PSS/Si interface as fabricated on the pyramid-textured
Si surface and suggested reducing the viscosity of the liquid
precursor, which is not an ideal solution.'> Consequently, it is a
critical mission to look after alternative textures combining
appropriate light trapping and the interface conformity in order
to improve the performance of the PEDOT:PSS/Si hybrid solar
cells.
One alternative to improve the PEDOT:PSS/Si interface
would be to introduce an additional process to “round” the
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valleys of the pyramids, alike to that employed in the HIT
(heterojunction with intrinsic thin layer) solar cell processing
for better uniformity control of the amorphous Si film as
deposited on a conventionally textured crystalline Si sub-
strate.'’> Moreover, as a result of our recent work, inverted
pyramid structures were fabricated by a low-cost one-step metal
assisted chemical etching of Si."* Importantly, in addition to
low reflectivity superiority, these inverted pyramid structures
are characterized with rounded and wide deeps, making this
texture very applicable for conformal coating and filling, as such
in PEDOT:PSS/Si hybrid solar cells.

In this work, we fabricated hybrid solar cells employing these
different textures: (i) conventional pyramids, (ii) pyramids with
rounded valleys and (iii) inverted pyramids, using otherwise
identical processing conditions and materials. Further charac-
terization revealed better performance of (ii) and (iii) on behalf
of an exceptional conformity at the PEDOT:PSS/Si and Ag/
PEDOT:PSS interface. Importantly, process (iii) resulted in the
best cell performance not only resulting from the better
interface conformity but also due to superior light trapping as
demonstrated earlier.'*
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Figure 1. SEM cross-sectional images of the PEDOT:PSS/Si interface employing (a) “conventional” (b) “rounded” and (c) “inverted” pyramid
textures. The PEDOT:PSS film is colored in blue for eye guide; (d) SEM top-view image of the inverted pyramid texture.
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Figure 2. Reflectance spectra of the textured samples (a) before and (b) after PEDOT:PSS spin-coating.

The experimental and devices fabrication methods are
discussed in detail in the Supporting Information (SI). Briefly,
these different types of textures were realized on Si substrates,
literally in form of (i) conventional pyramids, fabricated by
anisotropic etching of Si in an aqueous alkaline solution, (ii)
pyramids with rounded valleys, fabricated by isotropic etching
of conventional pyramids structured Si in an aqueous solution
with HF and HNOj; and (iii) inverted pyramids, fabricated by
maskless Cu-assisted anisotropic etching of Si in an aqueous
solution with HF, H,0, and Cu(NOs;),, labeled correspond-
ingly as “conventional”, “rounded” and “inverted” samples.
Then PEDOT:PSS (PH1000) was mixed with 5 wt % dimethyl
sulfoxide (DMSO) to achieve a highly conducting form. Prior
to spin coating the PEDOT:PSS layer, the aluminum back
electrode was deposited on the precleaned Si substrates. Finally,
the silver frontal electrode was deposited on the PEDOT:PSS
layer through a shadow mask. A picture of the “inverted”
sample after texturing is shown in Figure S1 in the Supporting
Information, which exhibits good uniformity. Figure 1la,b,c
show the scanning electron microscope (SEM) cross-sectional
images of the PEDOT:PSS films as deposited on “conven-
tional”, “rounded” and “inverted” substrates, respectively. The
film thickness as may be judged from SEM images, is similar in
all samples and is of the order of ~50 nm. However, the
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conformity of the interface is apparently different. Indeed,
Figure la reveals that voids remained in valleys of the
conventional pyramid textures, because it is difficult for
PEDOT:PSS to go into these narrow valleys during the spin-
coating process, thus leading the valleys to be uncovered.
Although the conformity of the interface is significantly
improved in the “rounded” and “inverted” samples. Figure 1b
shows an SEM image of rounded pyramids after secondary
etching process, it is obvious that the valleys of the pyramids
are becoming open and wide, and the PEDOT:PSS layer
conformity is effectively improved. A much wider and opener
inverted pyramid structure is exhibited in Figure lc. Obviously,
a conformal coverage of PEDOT:PSS layer down to the
bottoms is formed, which indicates a good interface quality of
the junction. For a reference, Figure 1d shows the morphology
of the inverted pyramid textures prior to the PEDOT:PSS spin-
coating.

Further reflectance spectra were recorded to compare light
trapping properties of the samples before and after spin-coating
of the PEDOT:PSS films, see Figure 2a,b, respectively. One of
the prominent trends for the light trapping evolution in Figure
2 is that PEDOT:PSS films act as efficient antireflective
coatings, particularly well for the conventional and rounded
pyramid textures, whereas the inverted pyramids exhibited

DOI: 10.1021/acsami.5b10959
ACS Appl. Mater. Interfaces 2016, 8, 26—30


http://pubs.acs.org/doi/suppl/10.1021/acsami.5b10959/suppl_file/am5b10959_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b10959/suppl_file/am5b10959_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b10959/suppl_file/am5b10959_si_001.pdf
http://dx.doi.org/10.1021/acsami.5b10959

ACS Applied Materials & Interfaces

35
(a) —&— conventional
30 —&— rounded
o —&— inverted
E st
«
£}
z
‘z
£ 15t
]
2 10f
-
'=
< ol
0 L L L L
0.0 0.1 0.2 0.3 04 0.5 0.6
Voltage(V)

10°F (b) 9,05"’
onti t‘a
A
~10k conventional “ﬁ‘a
= » rounded & o
9 o inverted P o°
> o
R 5", ®
z 107 F y 'é
g ,. ."
s ., ':l‘-ﬁ.‘,‘.fm K 'o
‘é 10 'om. °
4 'a'
5 ' L »
107 F
3D
")-' 1 1 1 1
-0.4 -0.2 0.0 0.2 04 0.6
Voltage(V)

Figure 3. Current density—voltage characteristics of the hybrid solar cells fabricated with different textures (a) under AML.S illumination condition
and (b) in darkness. The inset shows a schematic illustration of the hybrid solar cells.

Table 1. Characteristics of the Hybrid Solar Cells

sample V. (V) Joe(mA-cm™2) FF (%)
conventional 0472 30.22 53.37
rounded 0.484 30.21 60.95
inverted 0.504 30.59 65.12

PCE (%) R, (ohm-cm?) J,(mA-cm™) n
7.61 7.15 2.99 X 107¢ 224
8.91 0.95 2.65 X 107° 1.99

10.04 0.15 0.75 x 107° 1.68

conventlonal

rounded

o PSS“ “ u

Figure 4. (a—c) Magnified SEM cross-sectional images of Ag/PEDOT:PSS/Si stacks, which panels d—f are the corresponding schematics illustrating

carrier transfer in samples with different textures.

minimal reflectivity already initially in accordance with our
previous work.'* Notably, a slight degradation in reflectivity as a
result of rounding of the valleys in conventional pyramids, see
Figure 2a, indirectly indicates that the rounding treatment was
efficient, correlating with the morphology transitions as
revealed in Figure la,b.

Upon sequential device fabrication processes, hybrid solar
cells were characterized under AM 1.5 illumination with an
intensity of 100 mW/cm” for evaluating potential efficiency
gains as a result of using different textures. Figure 3 shows
current density—voltage (J—V) characteristics of these hybrid
solar cells under illumination (a) and in darkness (b). As can be
deduced from Figure 3a, the open-circuit voltage (V,.), the fill-
factor (FF) and the cell efficiency have increased remarkably
when changing textures (see Table 1). The reverse saturation
current density (J,) and ideality factor (1) have been extracted
from the intercept on the vertical axis from the log (dark
current)-voltage graph (Figure 3b), as shown in Table 1. The
ideality factors (n) are different for the three samples. This # is
used to understand the electronic process in Schottky diodes.”
The values of n decrease when the interface conformity
increases from “conventional” to “inverted” samples, suggesting
a reduction in carriers recombination. Also, as exhibited in
Figure 1 and Table 1, it can be inferred that good interface
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conformity can reduce the J,. As we know, lower J; can lead to
higher V. according to the relationship between V. and ],
thus good interface conformity can improve the V.. Therefore,
according for the data in Figure 1, Figure 3 and Table 1, it may
be readily concluded that the performance of these hybrid solar
cells is strongly improved with eliminating the porosity at the
PEDOT:PSS/Si interface, and Figure 1 provides more insights
into the mechanism. It is significantly important to discern the
correlation between performance enhancement and conformity
of PEDOT:PSS/Si interface, therefore a detailed study is
carried out to elucidate the correlation. The schematic models
in Figure 4d,ef illustrate the observed differences in the nature
of the interface conformity between the three kinds of textures,
with the carriers transfer processes during the cell operation
marked by arrows. Specially, for conventional pyramid textures
(Figure 4d), the voids occurrence at the PEDOT:PSS/Si
interface, are likely to form local shunts, which ultimately
deteriorate the Voc and FF of the solar cells.'"'>'° In addition,
the carriers cannot be separated and transported there and will
not contribute to the generation of photocurrent, thus leading
to a low current density.'” As a result, the worst PCE of 7.61%
is yielded for “conventional” sample. In its rounding of the
deeps in the conventional pyramid texture allows PEDOT:PSS
to penetrate down to the deep bottoms (see Figure 4e),
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forming a better coverage layer on Si surface, which not only
form a sufficient passivated layer on the whole wafer surface,
minimizing the interface recombination losses but also increase
the areas of the junction, facilitating the carriers separation and
transport through the PEDOT:PSS layer,''®'? Altogether,
these improvements deliver a significant efficiency enhance-
ment up to 8.91% primarily on behalf of the V_ . and FF
increase. Concurrently, the short-circuit current density, J.
does not change much in devices using both types of normal
pyramid textures (see Table 1). Importantly, the use of inverted
pyramid texturing (Figure 4f) extends the device efficiency up
to 10.04% as a result of eliminating the interface porosity
problem, demonstrating superior V,, FF and J,. (see Table 1).

It is worth mentioning that the trend in the serial resistance
(R,) variation correlates with the efficiency increase in Table 1,
which is also attributed to the conformity of the Ag/
PEDOT:PSS/Si interface as seen from Figure 4ab,c. It is
known that the direct connection between Ag electrode and the
emitter region plays a key role in the reduction of Rs.”’ Herein,
the Rs of our solar cells is significantly influenced by the
interface conformity of PEDOT:PSS/Si and Ag/PEDOT:PSS.
And, the interface quality of PEDOT:PSS/Si is more critical
because the coverage of PEDOT:PSS is very sensitive to the
morphology of Si surface while Ag electrode layer prepared by
sputtering process usually conformally copys the morphology
of the PEDOT:PSS layer. As shown in Figure 4a,d, for
“conventional” samples, the photon-generated carriers must
travel a longer way in the Si layer before they reach the Ag
electrode due to the existence of uncovered region in
PEDOT:PSS/Si interface. Some of them will be lost during
their trips due to the recombination and cannot be collected by
the Ag electrode, leading to the lower current density. In
contrast, Figure 4b,c show that there is no shunt in the interface
for the “rounded” and “inverted” samples, resulting in more
efficiently carriers’ transport and collection as demonstrated in
Figure 4e,f.

In summary, a trend of increasing efficiency in the
PEDOT:PSS/Si hybrid solar cells as a function of the interface
conformity was revealed. As a result, a record high for this type
of cells-efficiency of 10.04% is achieved with V_,, J., FF, R, of
504 mV, 30.59 mA/cm? 65.12% and 0.15 ohm-cm?
respectively, employing inverted pyramid textures. The
influences of interface conformity on the cell performance are
carefully investigated. Our results here demonstrate that the
performance are positively correlated with the interface
conformity, and the open and wide structures such as inverted
pyramids are favorable for forming good interface engineering.
In addition, the PEDOT:PSS/Si hybrid solar cells based on
inverted pyramid structures are very promising for future solar
energy conversion.
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